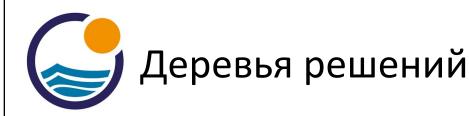


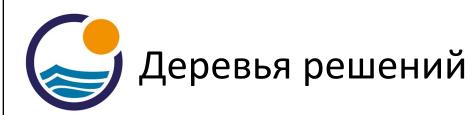
Деревья решений (decision trees)

- Следующие три раздела посвящены методам на основе деревьев.
- Три основных метода:
 - Деревья решений (decision trees)
 - Случайные леса (random forests)
 - Расширяемые деревья (boosted trees)

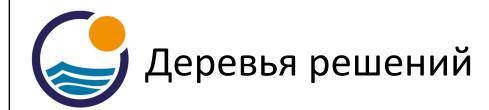


- Все эти три метода основаны на базовом алгоритме деревьев решений.
- Мы пройдём все три метода, каждый в своём разделе курса, и в самом конце уже будут проверочные упражнения.

Деревья решений История

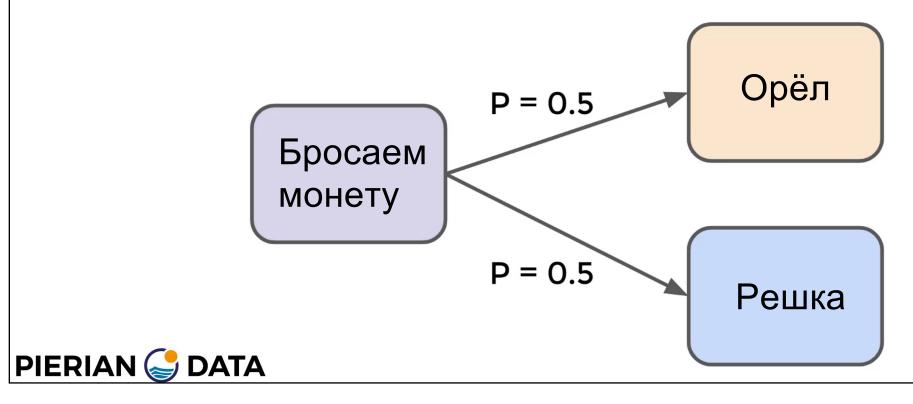


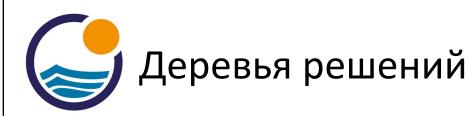
- Хотя базовые деревья решений использовались для принятия решений уже очень длительное время, статистические деревья решений были разработаны относительно недавно.
- Обратите внимание, это разные вещи.



• Общий термин "дерево решений" можно описать как схему, отображающую выбор решения:

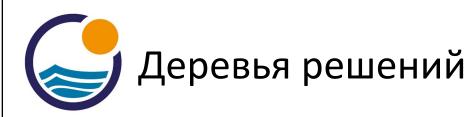
 Общий термин "дерево решений" можно описать как схему, отображающую выбор решения:



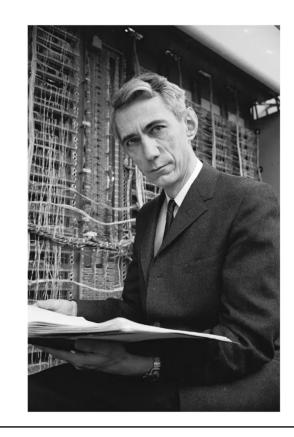


- Обучение деревьев решений это статистическое моделирование с применением деревьев, где решения в каждом узле принимаются на основе некоторого условия (некоторой метрики).
- Давайте рассмотрим шаги, которые привели к возможности создавать предсказания на основе деревьев.

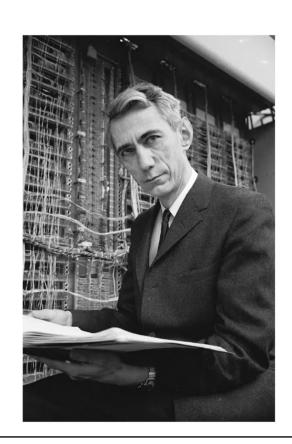
- В двух словах деревья решений и похожие методы разбивают данные на части на основе информации, содержащейся в признаках.
- Это значит, что нам нужно математическое определение термина информация, и способность измерить её.

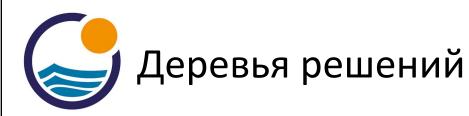


- Клод Шеннон считается отцом теории информации.
- В 1948 году в журнале Bell System Technical Journal опубликовал работу "Математическая теория коммуникаций".

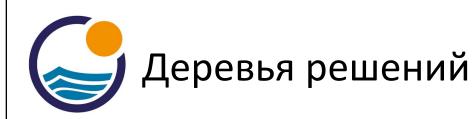


- Работал в разных сферах:
 - Проектирование микросхем
 - Криптография
 - Носимые компьютеры
 - Искусственный интеллект

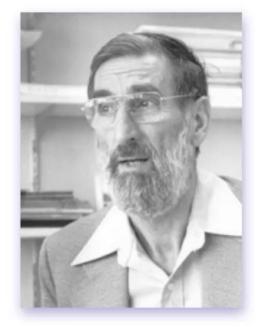




- Способность измерить информацию станет важна, когда мы рассмотрим математические основы построения деревьев решений.
- Мы займёмся этим позже, а пока посмотрим на этапы развития деревьев решений.

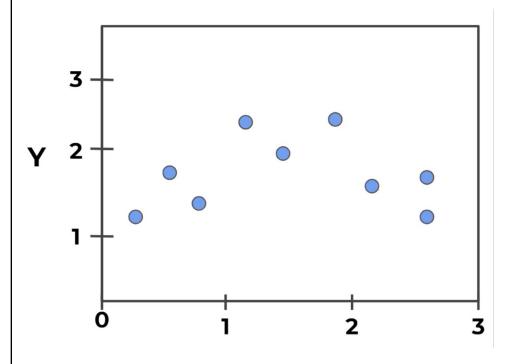


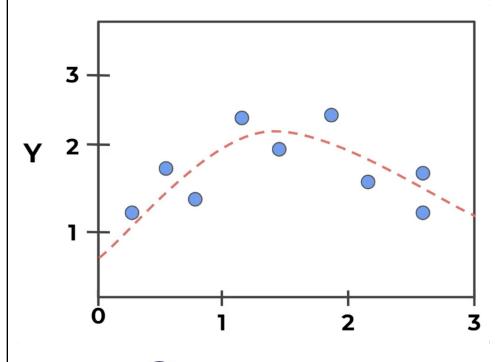
 1963: Морган, Санквист - первая публикация регрессионного алгоритма деревьев

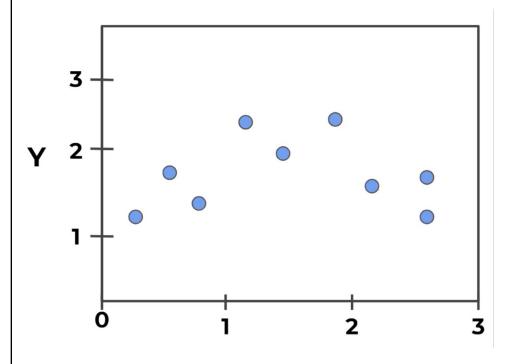


• 1963: piecewise-constant regression tree

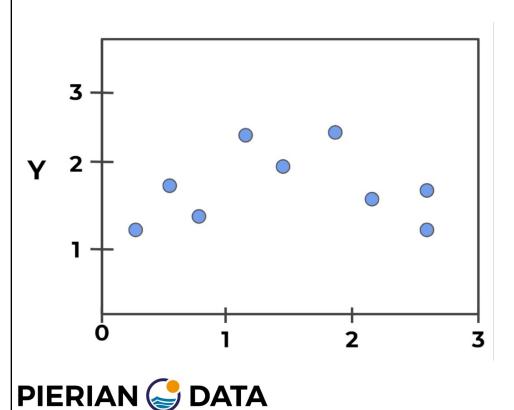
X



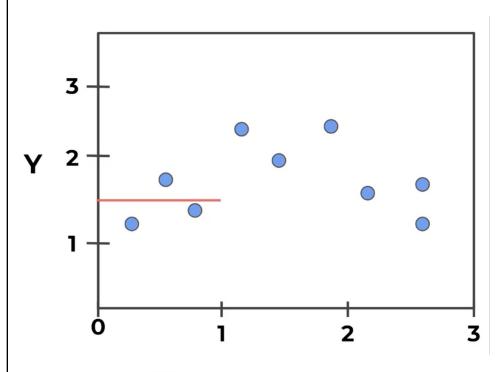


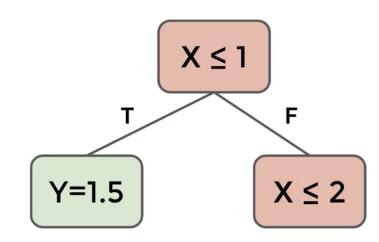


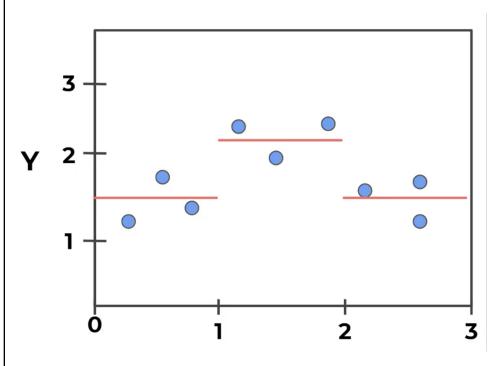
• 1963: piecewise-constant regression tree

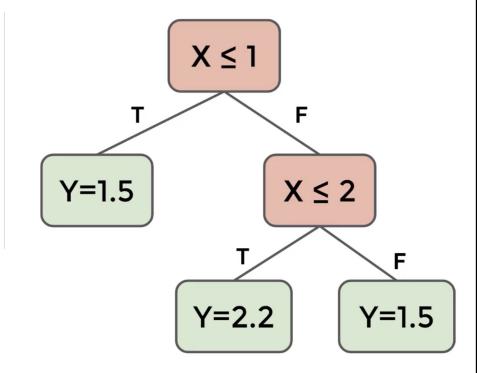


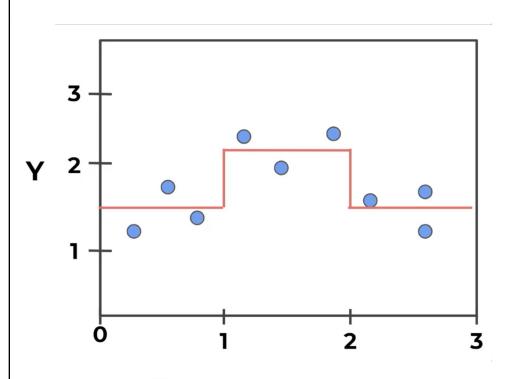
X < 1

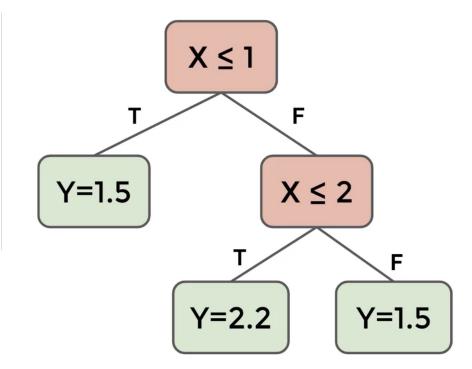






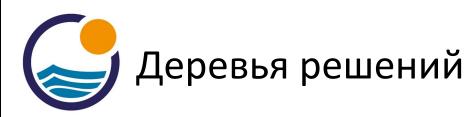




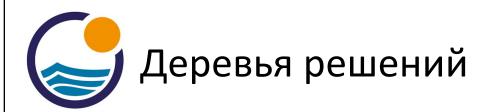


 В статье 1963 года разбиения в каждом узле дерева основывались на "загрязнении узла" (node impurity), которое по сути определялось как метрика ошибки:

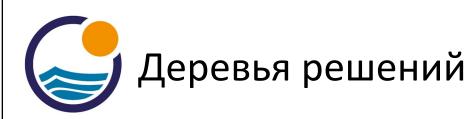
$$\phi(t) = \sum_{i \in t} (y_i - \bar{y})^2$$



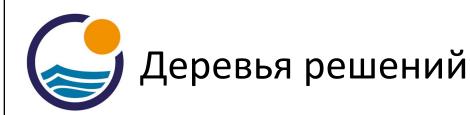
- 1972: Роберт Мессенджер и Льюис Манделл публикуют первый алгоритм классификации с применением деревьев.
- Условие разделения в узлах было названо "Theta Automatic Interaction Detection" (THAID)



- 1972: Роберт Мессенджер и Льюис Манделл публикуют первый алгоритм классификации с применением деревьев.
- Условие разделения в узлах было названо "Theta Automatic Interaction Detection" (THAID)
- 1980: Гордон Кисс публикует развитие алгоритма CHAID Chi-square automatic interaction detection.

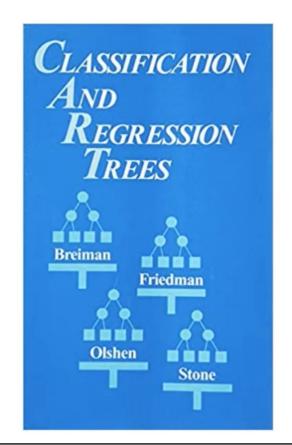


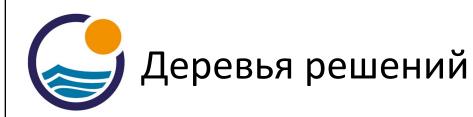
• 1970-е годы: Лео Брейман и Чарльз Стоун из Беркли, Джером Фридман и Ричард Ольшен из Стэнфорда начали разработку алгоритмов CART — Classification and Regression tree.



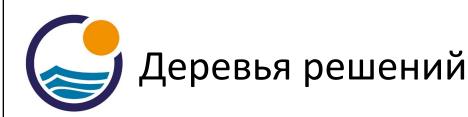
- 1970-е годы: Лео Брейман и Чарльз Стоун из Беркли, Джером Фридман и Ричард Ольшен из Стэнфорда начали разработку алгоритмов CART — Classification and Regression tree.
- 1984: Они опубликовали книгу по алгоритмам CART, включая детали реализации на компьютере.
- Методы на основе CART стали стандартом (и в Scikit-Learn!)

- В книге CART были предложены многие концепции:
 - Кросс-валидация деревьев
 - Усечение деревьев (pruning)
 - Суррогатные разбиения
 - О Оценки важности переменных
 - Поиск линейных разделений



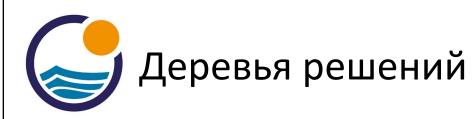


- 1986: Джон Росс Квинлан разработал алгоритм деревьев решений ID3 на основе метрики "gain ratio".
- 1990-е: улучшения ID3 С4.5 (всё ещё популярен)
- 2000-е: выпущена оптимизированная коммерческая версия C5.0 с различными улучшениями.



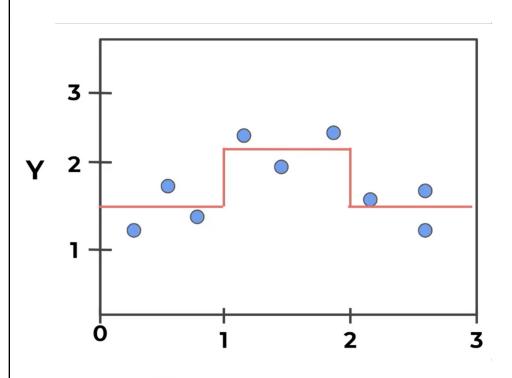
- Многие улучшения основного алгоритма были перенесены на другие методы с применением деревьев – случайные леса и расширяемые деревья.
- Давайте посмотрим на фундаментальную идею деревьев решений!

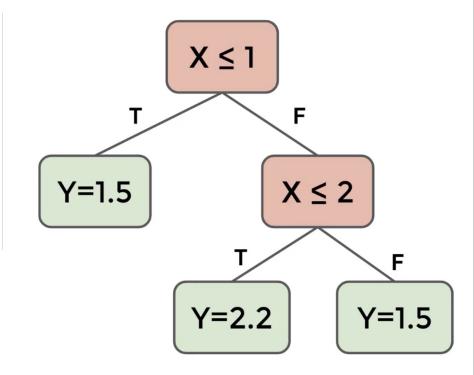
Деревья решений Терминология



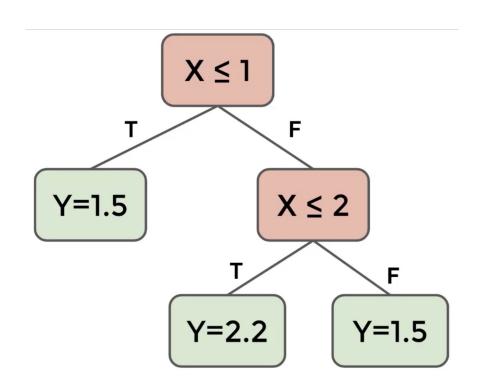
• Для начала обсудим различные термины, которые встречаются при обсуждении деревьев...

• Вспомним наше простое дерево:

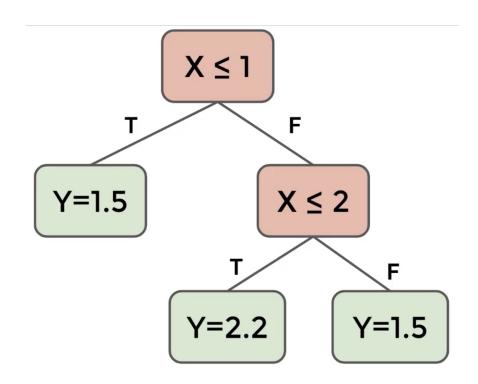




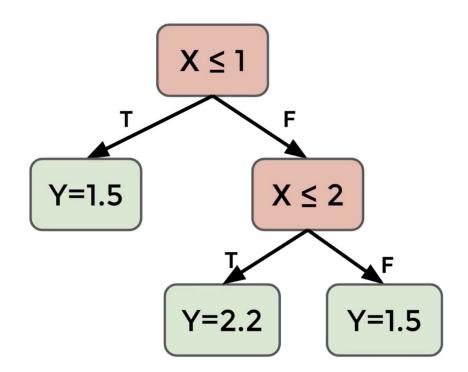
• Вспомним наше простое дерево:



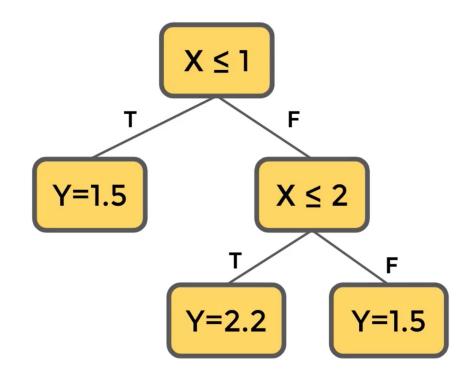
• Разбиение (splitting):

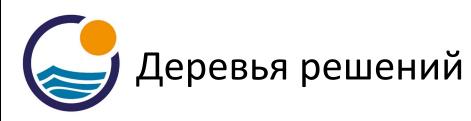


Разбиение (splitting):

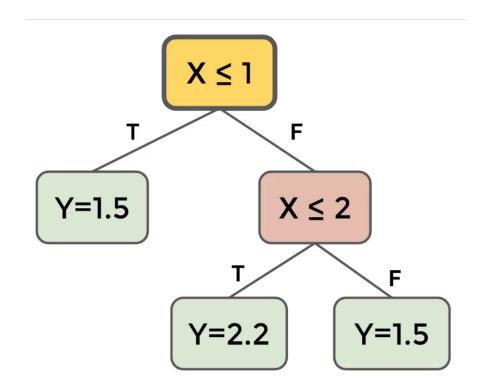


Узлы (nodes):

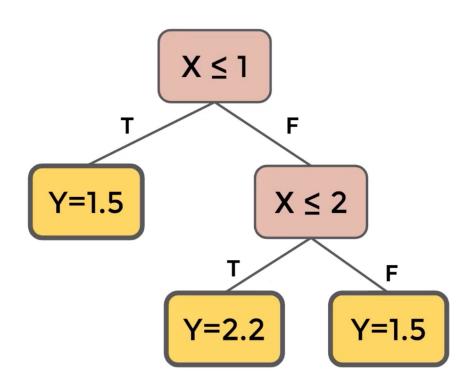




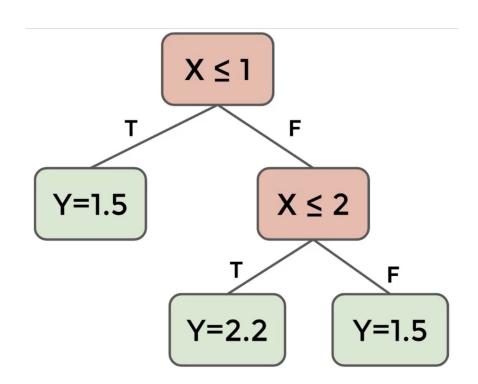
• Корневой узел (root node):

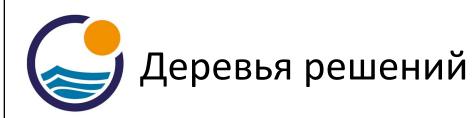


• Листовые / конечные узлы (leaf / terminal nodes):

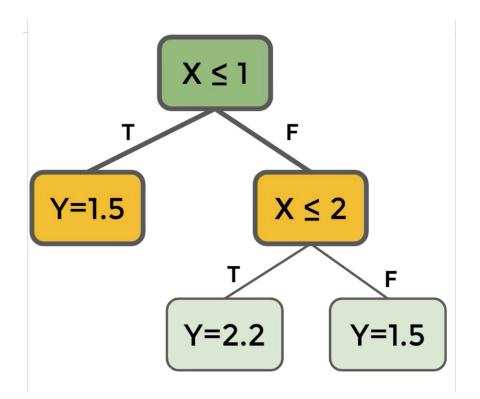


• Родительские/дочерние узлы (parent/children nodes):

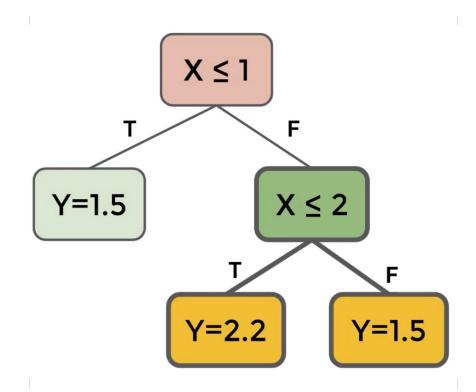




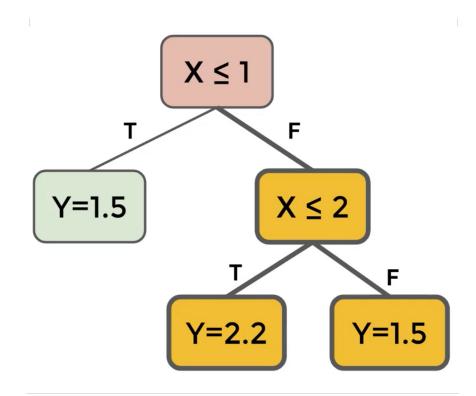
• Родительские/дочерние узлы (parent/children nodes):



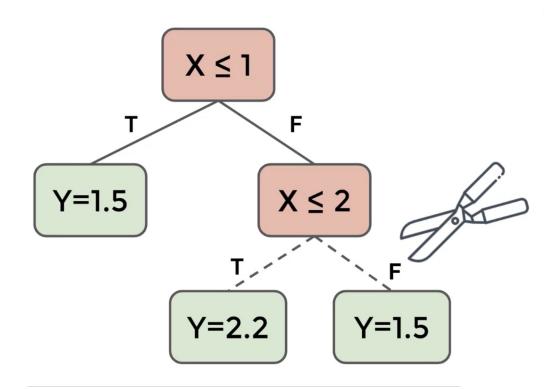
• Родительские/дочерние узлы (parent/children nodes):



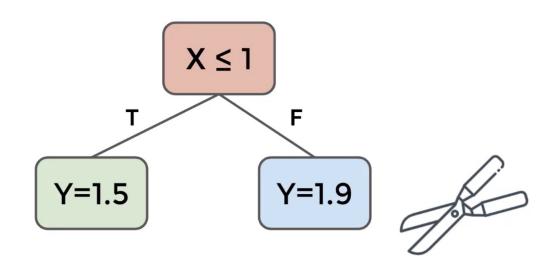
• Ветви / поддеревья (tree branches / sub trees):

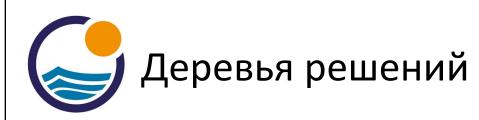


• Усечение (pruning)

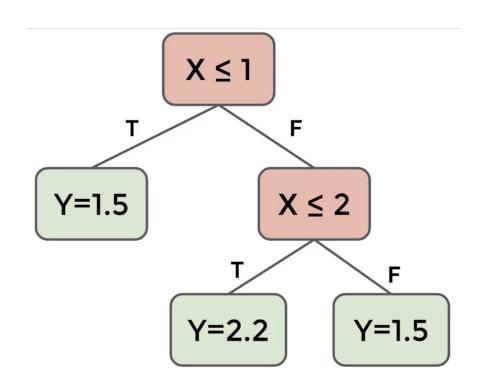


• Усечение (pruning)

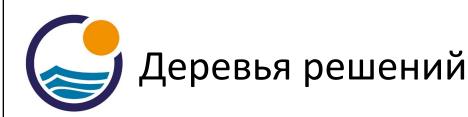




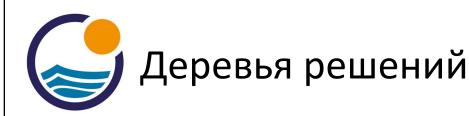
• Далее мы перейдём к построению дерева!



Деревья решений Gini impurity



• Прежде чем мы узнаем, как при построении деревьев выбираются критерии разбиения, давайте взглянем на наиболее часто используемую метрику измерения информации для деревьев решений — gini impurity (загрязнение Джини, индекс Джини, примесь Джини).



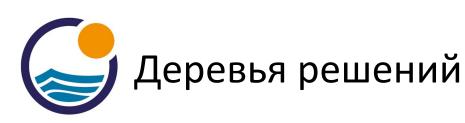
- Метрика "gini impurity" измеряет, насколько информация в наборе данных является чистой ("pure").
- С точки зрения задач классификации, мы можем воспринимать это как однородность классов.
- Посмотрим как это выглядит на простейшем примере двух классов...

- Метрика "gini impurity" для классификации
 - Для набора классов С и заданного набора данных Q:

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

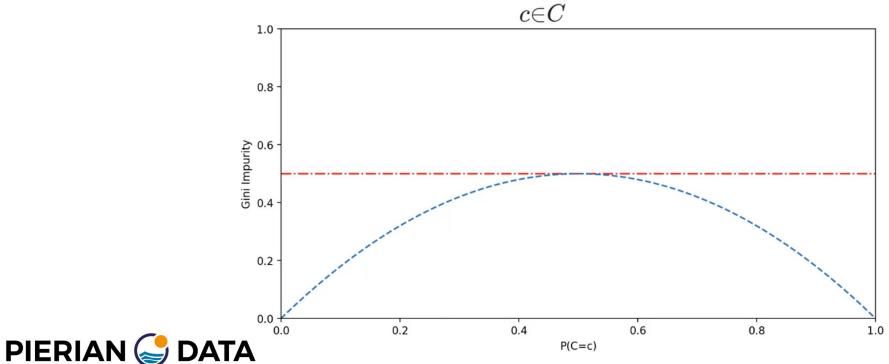
- Метрика "gini impurity" для классификации
 - Для набора классов С и заданного набора данных Q,
 р это вероятность класса С.

$$p_c = rac{1}{N_Q} \sum_{x \in O} \mathbb{1}(y_{class} = c) \qquad G(Q) = \sum_{c \in C} p_c (1 - p_c)$$



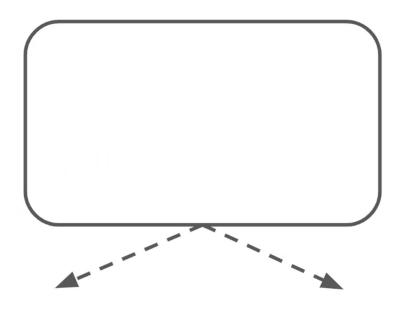
Метрика "gini impurity" для классификации

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$



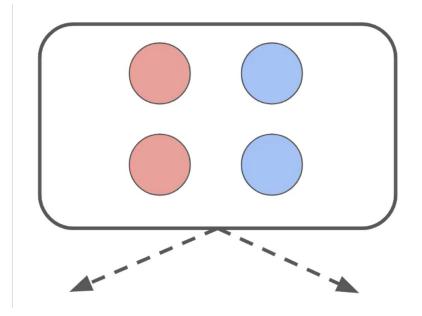
Метрика "gini impurity" для классификации

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$



Метрика "gini impurity" для классификации

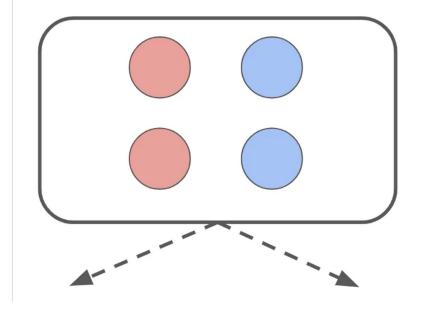
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$



Метрика "gini impurity" для классификации

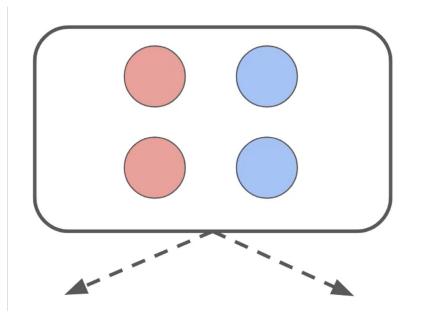
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Класс "красный" (2/4)(1 - 2/4) = 0.25



Метрика "gini impurity" для классификации

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

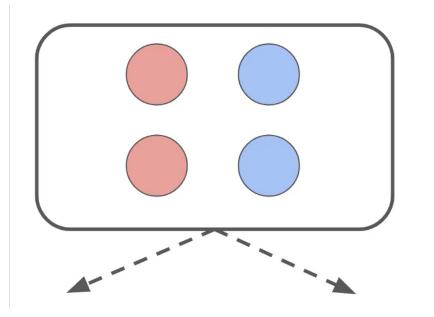


Класс "красный" (2/4)(1 - 2/4) = 0.25

Класс "синий" (2/4)(1-2/4)=0.25

Метрика "gini impurity" для классификации

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$



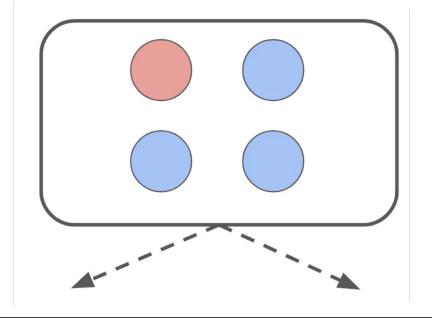
Класс "красный" (2/4)(1 - 2/4) = 0.25

Класс "синий" (2/4)(1-2/4)=0.25

Gini Impurity 0.25 + 0.25 = 0.5

• Данные более чистые (меньше "impurity")

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$



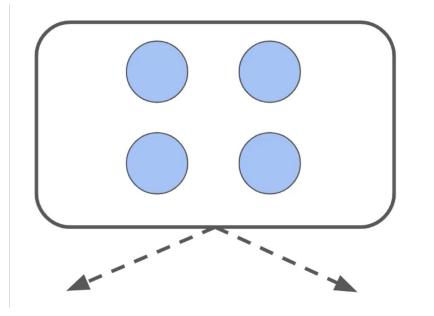
Класс "красный" (1/4)(1 - 1/4) = 0.1875

Класс "синий" (3/4)(1 - 3/4) = 0.1875

Gini Impurity 0.1875+0.1875 = 0.375

Данные полностью чистые (нулевой "impurity")

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

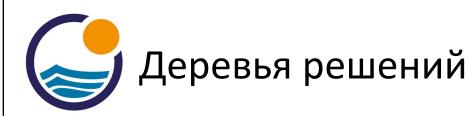


Класс "красный" (0/4)(1 - 0/4) = 0

4

Класс "синий" (4/4)(1-4/4)=0

Gini Impurity 0 + 0 = 0

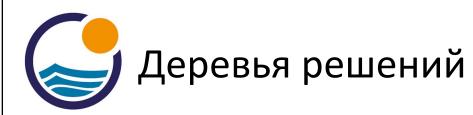


- Если цель дерева решений в том, чтобы отделить классы друг от друга, то мы можем выполнять разбиения данных на основе метрики gini impurity.
- Мы хотим минимизировать gini impurity на листьях.
- Если на листьях gini impurity минимально, то это будет означать, что мы удачно разделили классы.

- В следующей лекции мы построим пример применения gini impurity, вычисляя его на основе набора данных.
- Далее мы рассмотрим различные типы разбиения признаков и определения того, какой признак будет корневым узлом.

Gini impurity в деревьях – часть 1

- Начнём разбираться в том, как лучше выбрать порядок узлов и как выполнять разбиение внутри дерева.
- Для начала посмотрим, как построить дерево на основе некоторого набора данных, используя метрику gini impurity.



- Начиная строить дерево, нам нужно выбрать признак, который будет использоваться для корневого узла.
- Мы можем применить метрику gini impurity для сравнения информации, содержащейся внутри признаков в наборе данных.
- Рассмотрим этот момент подробнее...

- Метрика "gini impurity" для классификации
 - Для набора классов С и заданного набора данных Q:

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Метрика "gini impurity" для классификации
 - Для набора классов С и заданного набора данных Q,
 р это вероятность класса С.

$$p_c = rac{1}{N_Q} \sum_{x \in Q} \mathbb{1}(y_{class} = c) \hspace{0.5cm} G(Q) = \sum_{c \in C} p_c (1 - p_c)$$

- Метрика "gini impurity" для классификации
 - Для набора классов С и заданного набора данных Q,
 р это вероятность класса С.

$$p_c = egin{pmatrix} rac{1}{N_Q} \sum_{x \in Q} \mathbb{1}(y_{class} = c) & G(Q) = \sum_{c \in C} p_c (1 - p_c) \end{pmatrix}$$

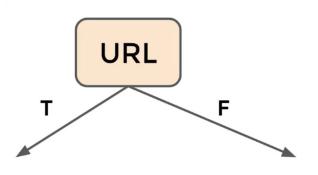
• Рассмотрим следующий набор данных:

X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

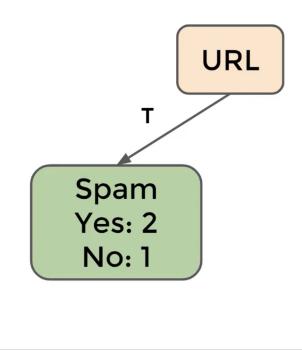
• Попытаемся спрогнозировать – спам или нет:

X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

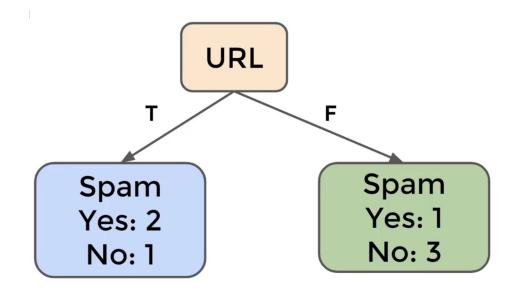
X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No



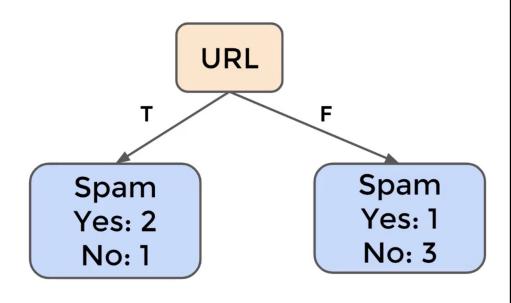
X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No



X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

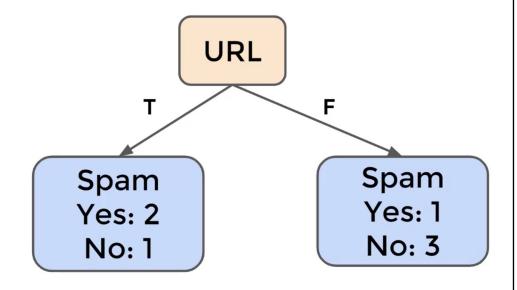


X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No



• Вспомним формулу gini impurity:

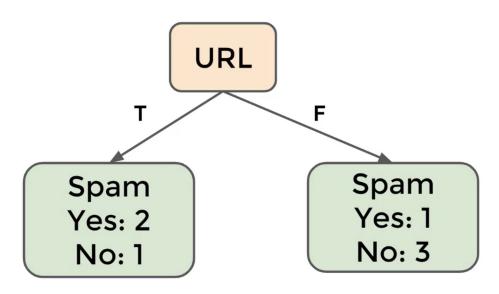
X - URL Link	Y-Spam	
Yes	Yes	
Yes	Yes	
No	No	
No	No	
No	Yes	
No	No	
Yes	No	



$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Пусть "спам" и "не-спам" будут классами С
- Левый листовой узел:

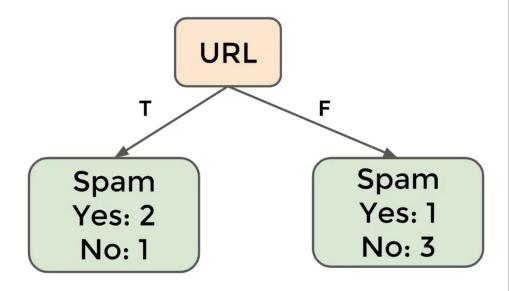
 $(\frac{2}{3})(1-\frac{2}{3})$



$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Пусть "спам" и "не-спам" будут классами С
- Левый листовой узел:

$$(\frac{2}{3})(1-\frac{2}{3}) + (\frac{1}{3})(1-\frac{1}{3})$$

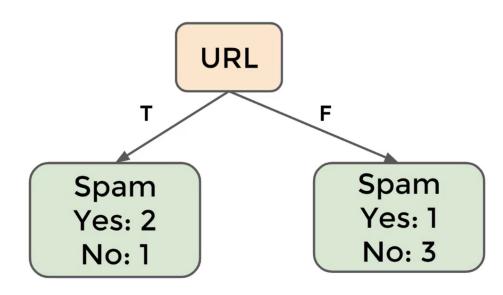


$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Пусть "спам" и "не-спам" будут классами С
- Левый листовой узел:

$$(\frac{2}{3})(1-\frac{2}{3}) + (\frac{1}{3})(1-\frac{1}{3})$$

Gini=0.44



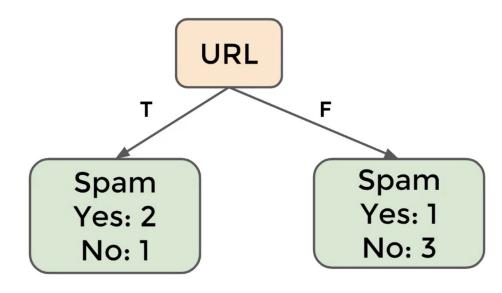
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Пусть "спам" и "не-спам" будут классами С
- Левый листовой узел:

$$(2/3)(1-2/3) + (1/3)(1-1/3)$$

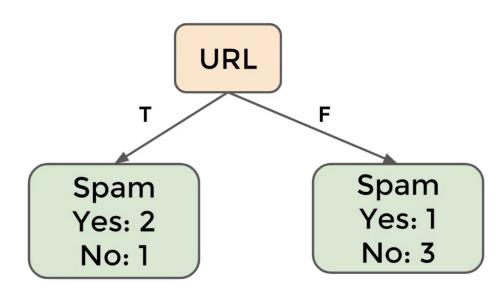
• Правый листовой узел:

$$(1/4)(1-1/4) + (3/4)(1-3/4)$$



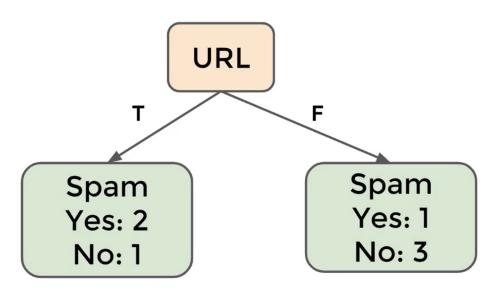
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Итак, для признака URL метрика gini impurity:
- Левый лист: Gini=0.44
- Правый лист: Gini=0.375



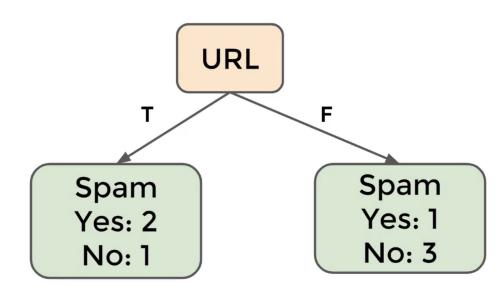
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Всего писем: (2+1) + (1+3) = 7
- Левый лист: Gini=0.44
- Правый лист: Gini=0.375



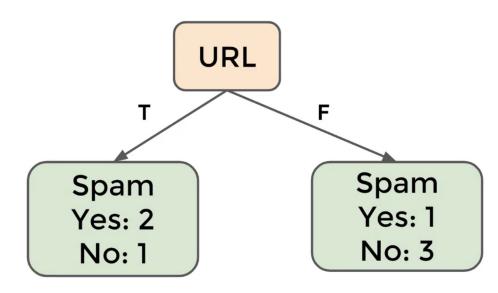
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Всего писем: (2+1) + (1+3) = 7
- Левый лист: Gini=0.44
- Правый лист: Gini=0.375
- Писем слева: 3
- Писем справа: 4



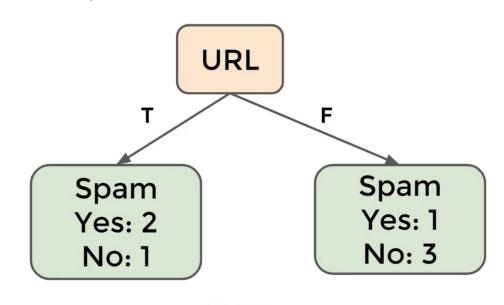
$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Всего писем: (2+1) + (1+3) = 7
- Левый лист: Gini=0.44
- Правый лист: Gini=0.375
- Писем слева: 3
- Писем справа: 4
- \bullet (3/7)*0.44+(4/7)*0.375
- Gini Impurity = 0.403



$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

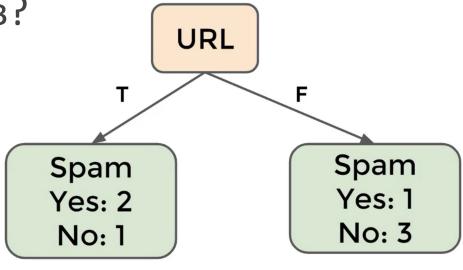
• Gini Impurity для признака URL равна 0.403



$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Gini Impurity для признака URL равна 0.403

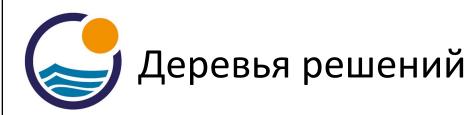
• А если несколько признаков?



$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

- Нам нужно разобрать ещё несколько вопросов:
 - Несколько признаков
 - Непрерывные признаки
 - Мульти-категориальные признаки
- Мы можем применить gini impurity для каждого из этих случаев, чтобы найти наилучший корневой узел и наилучшие параметры разбиения для листьев.

Gini impurity в деревьях – часть 2



- Ранее мы узнали, как вычислять gini impurity для бинарного категориального признака (состоящего только из двух категорий).
- Нам нужно разобрать ещё несколько вопросов:
 - Непрерывные признаки
 - О Мульти-категориальные признаки (N>2)
 - о Как выбрать корневой узел

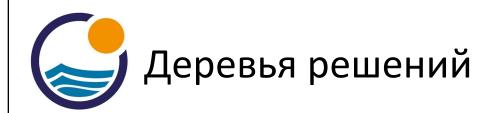


• Представим себе непрерывный признак:

X - Words in Email	Y-Spam	
10	Yes	
40	No	
20	Yes	
50	No	
30	No	

• Вычислим метрику gini impurity

X - Words in Email	Y-Spam	
10	Yes	
40	No	
20	Yes	
50	No	
30	No	



• Сначала отсортируем данные

X - Words in Email	Y-Spam	
10	Yes	
40	No	
20	Yes	
50	No	
30	No	

• Вычислим возможные значения для разделения

X - Words in Email	Y-Spam	
10	Yes	
20	Yes	
30	No	
40	No	
50	No	

Words ≤ N

• Возьмём средние значения "между" строками

X - Words in Email	Y-Spam	
15 10	Yes	
25 20	Yes	
30	No	
35 40	No	
50	No	

Words ≤ N

Вычислим gini impurity для каждого разбиения

X - Words in Email		Y-Spam	
15		Yes	
		Yes	
30		No	
	40	No	
50 No		No	

Words ≤ 15

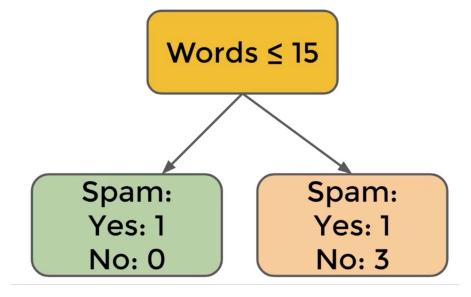
Вычислим gini impurity для каждого разбиения

X - Words in Email		Y-Spam	
10 20		Yes	
		Yes	
30		No	
	40	No	
	50	No	

Words ≤ 15

Вычислим gini impurity для каждого разбиения

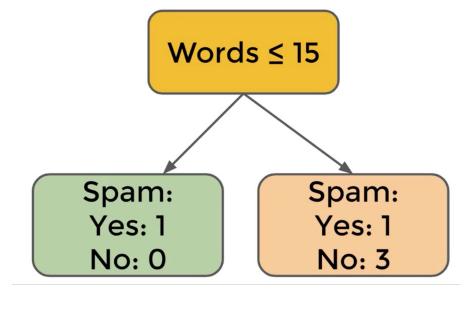
X - Words in Email		Y-Spam	
10 20		Yes	
		Yes	
30		No	
	40	No	
50		No	



$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Вычислим gini impurity для каждого разбиения

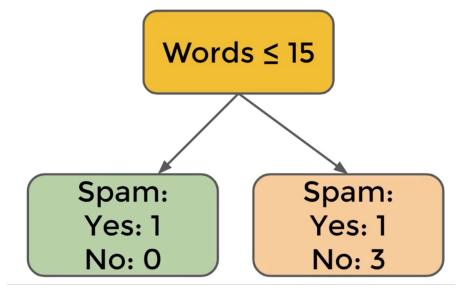
X - Words in Email		Y-Spam	
15	10	Yes	
20		Yes	
30		No	
	40	No	
	50	No	



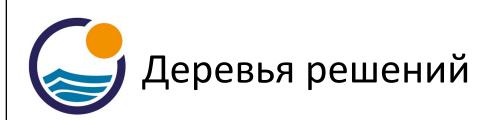
$$G(Q) = {}^{1/5}(0+0) + {}^{4/5}((1/4)(1-1/4)+(3/4)(1-3/4))$$

Вычислим gini impurity для каждого разбиения

X - Words in Email		Y-Spam	
10 20		Yes	
		Yes	
30		No	
	40	No	
	50	No	



$$G(Q)= {}^{1/5}(0+0)+{}^{4/5}((1/4)(1-1/4)+(3/4)(1-3/4))$$

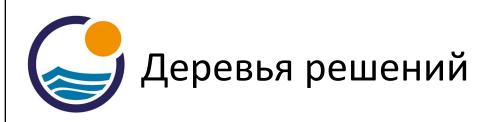


• Вычислим gini impurity для каждого разбиения

X - Wo	rds in Email	Y-Spam	
15	10	Yes	→ Gini=0.3
	20	Yes	U IIII-0.5
	30	No	
	40	No	
	50	No	

• Вычислим gini impurity для каждого разбиения

X - Words in Email		Y-Spam	
15	10	Yes	→ Gini=0.3
	20	Yes	→ Gini=0.3
25	30	No	
35	40	No	Gini=0.26
45	50	No	Gini=0.4

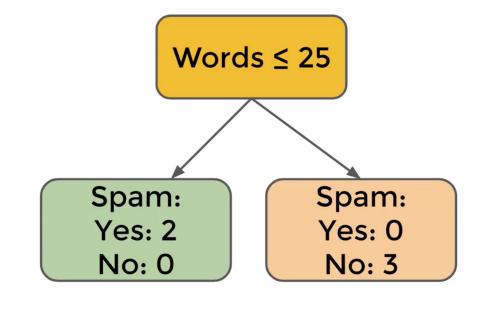


• Выбираем наименьший gini impurity

X - Words in Email	Y-Spam	
15 10	Yes	Gini=0.3
20	Yes	Gini=0.3
30	No	
40	No	→ Gini=0.26
50	No	Gini=0.4

• Это значение будет разделителем для узла

X - Words in Email		Y-Spam	
	10	Yes	
25	20	Yes	
	30	No	
	40	No	
	50	No	

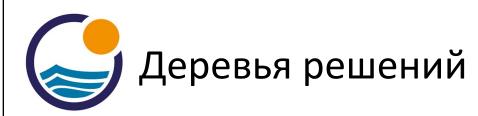


$$G(Q) = \mathbf{0}$$

- Мы вычислили gini impurity для следующих случаев:
 - Бинарные признаки
 - Непрерывные признаки
- Далее давайте вычислим эту метрику для мульти-категориальных признаков

• Мульти-категориальный признак:

X - Sender	Y-Spam	
Abe	Yes	
Bob Yes		
Claire	No	
Abe	No	
Bob	No	

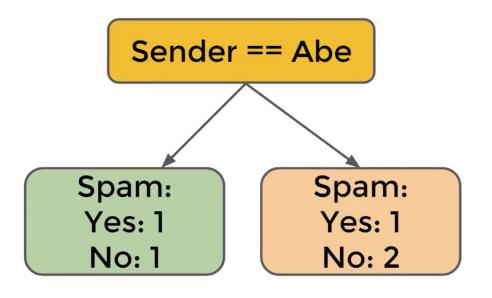


Вычислим gini impurity для всех комбинаций

X - Sender	Y-Spam	
Abe	Yes	
Bob	Yes	
Claire	No	
Abe	No	
Bob	No	

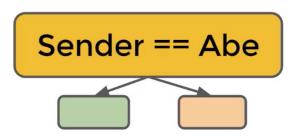
• Вычислим gini impurity для всех комбинаций

X - Sender	Y-Spam	
Abe	Yes	
Bob	Yes	
Claire	No	
Abe	No	
Bob	No	



• Вычислим gini impurity для всех комбинаций

X - Sender	Y-Spam	
Abe	Yes	
Bob	Yes	
Claire	No	
Abe	No	
Bob	No	

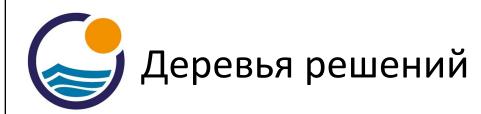


• Вычислим gini impurity для всех комбинаций

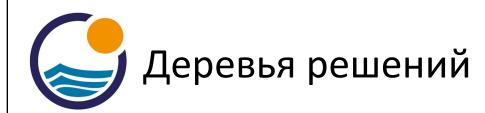
X - Sender	Y-Spam	Sender == Abe	
Abe	Yes		
Bob	Yes	Sender == Bob	
Claire	No	Serider Bob	
Abe	No		
Bob	No	Sender == Claire	
>1.4.1. <i>C</i> = >.4=4			

Вычислим gini impurity для всех комбинаций

X - Sender	Y-Spam	Sender == Abe	Sender == Abe или Bob
Abe	Yes		
Bob	Yes	Sender == Bob	Sender ==
Claire	No		Claire или Bob
Abe	No		
Bob	No	Sender == Claire	Sender == Abe или Claire
ΡΙΔΝ 🤼 ΡΔΤΔ			

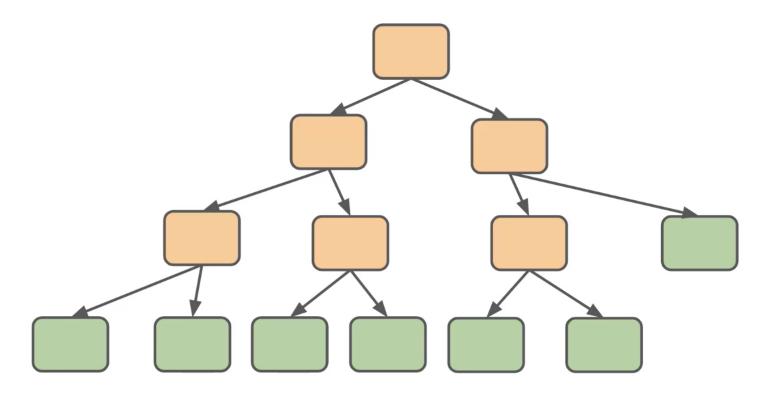


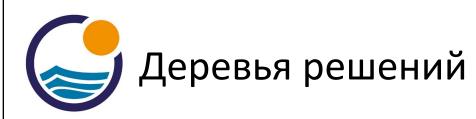
- Теперь мы умеем вычислить gini impurity для различных типов признаков.
- Но как выбрать признак для корневого узла, когда признаков несколько?
- Нужно вычислить gini impurity для каждого признака, выбрать тот где метрика наименьшая, и взять его первым.



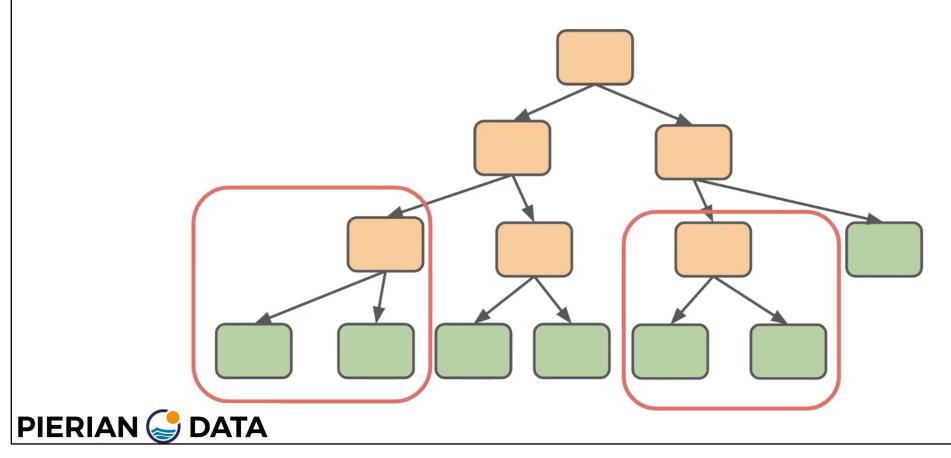
- Мы хотим минимизировать gini impurity на листьях.
- Оставляем листья, когда impurity меньше некоторого порогового значения.
- Выполняем разбиение только в тех случаях, когда impurity больше некоторого порогового значения.

• Слишком большое дерево ("overfitted"):



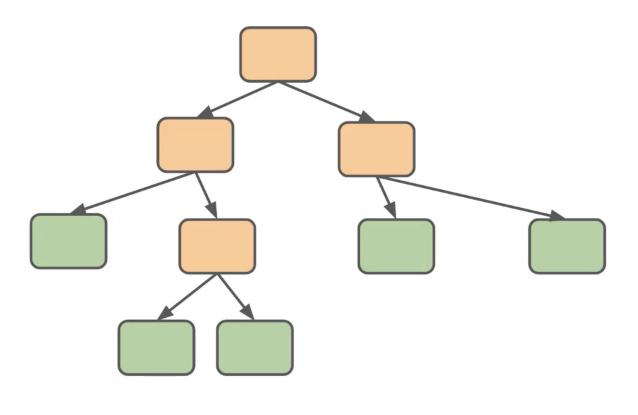


• Добавляем порог уменьшения для gini impurity:

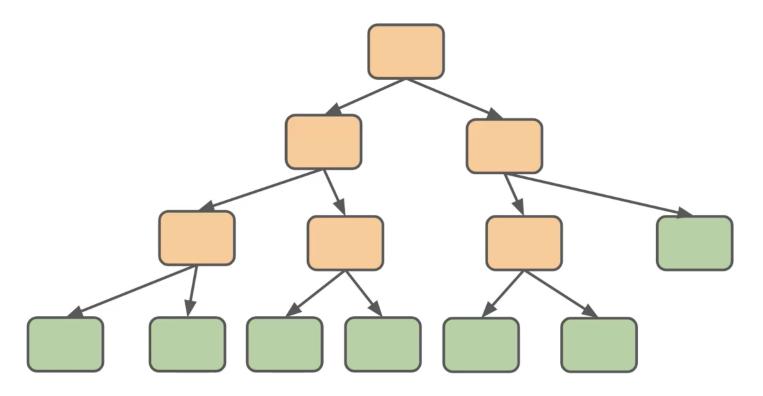




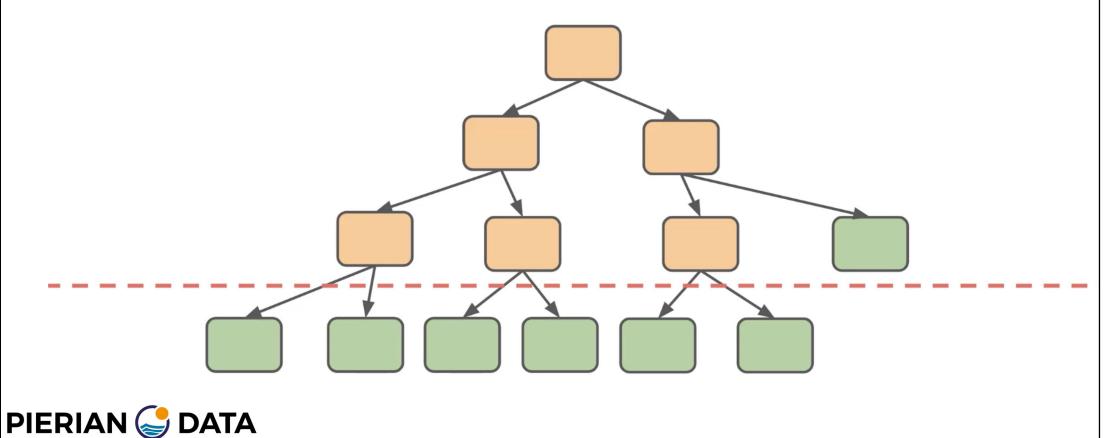
• Добавляем порог уменьшения для gini impurity:

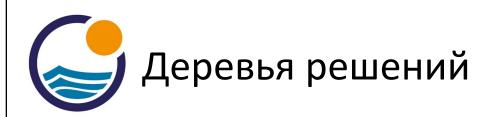


Ещё мы можем установить максимальную глубину

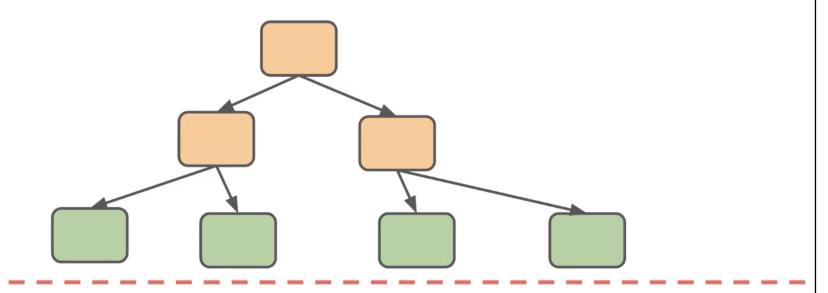


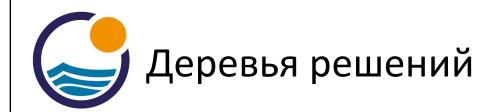
• Ещё мы можем установить максимальную глубину





Ещё мы можем установить максимальную глубину





 Посмотрим различные гиперпараметры во время написания кода!

Пишем код – часть 1 - данные

Пишем код – часть 2 - модель

